首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314307篇
  免费   42481篇
  国内免费   32063篇
电工技术   36235篇
技术理论   22篇
综合类   26759篇
化学工业   44231篇
金属工艺   10633篇
机械仪表   17450篇
建筑科学   17957篇
矿业工程   7187篇
能源动力   13370篇
轻工业   19504篇
水利工程   7117篇
石油天然气   9970篇
武器工业   3133篇
无线电   48914篇
一般工业技术   27131篇
冶金工业   6633篇
原子能技术   3774篇
自动化技术   88831篇
  2024年   886篇
  2023年   5597篇
  2022年   9992篇
  2021年   12494篇
  2020年   12296篇
  2019年   10322篇
  2018年   9146篇
  2017年   11773篇
  2016年   12754篇
  2015年   14646篇
  2014年   18339篇
  2013年   20140篇
  2012年   24267篇
  2011年   26548篇
  2010年   19476篇
  2009年   19521篇
  2008年   20743篇
  2007年   23237篇
  2006年   21328篇
  2005年   18352篇
  2004年   15465篇
  2003年   12804篇
  2002年   9812篇
  2001年   7613篇
  2000年   5979篇
  1999年   4942篇
  1998年   3867篇
  1997年   3073篇
  1996年   2572篇
  1995年   2196篇
  1994年   1861篇
  1993年   1352篇
  1992年   1065篇
  1991年   804篇
  1990年   677篇
  1989年   509篇
  1988年   397篇
  1987年   248篇
  1986年   244篇
  1985年   318篇
  1984年   252篇
  1983年   195篇
  1982年   241篇
  1981年   134篇
  1980年   114篇
  1979年   42篇
  1978年   21篇
  1977年   31篇
  1976年   21篇
  1959年   28篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
In the present investigation, systematic grinding experiments were conducted in a laboratory ball mill to determine the breakage properties of low-grade PGE bearing chromite ore. The population balance modeling technique was used to study the breakage parameters such as primary breakage distribution (Bi, j) and the specific rates of breakage (Si). The breakage and selection function values were determined for six feed sizes. The results stated that the breakage follows the first-order grinding kinetics for all the feed sizes. It was observed that the coarser feed sizes exhibit higher selection function values than the finer feed size. Further, an artificial neural network was used to predict breakage characteristics of low-grade PGE bearing chromite ore. The predicted results obtained from the neural network modeling were close to the experimental results with a correlation of determination R2 = 0.99 for both product size and selection function.  相似文献   
42.
The heat production and thermal storage characteristics of rapid-preparation amorphous powder activated coke (RAC) were investigated. RAC was prepared by using a drop-tube reactor system. The natural oxidation characteristics of RAC were studied through combined TG–FTIR analysis and temperature-programmed experiment. Experimental results showed that CO and CO2 were the main oxidation products of RAC in air, and that the oxidation reaction was in accordance with the Arrhenius equation and law of mass action. Thermal storage characteristics were studied through computational fluid dynamics simulation. The maximum excess temperature θmax increases linearly with the increase of the initial temperature. The concentration fields of the products show that CO2 is mainly concentrated in the upper part of the coke bin, and the CO generated by CO2 at high temperature is mainly concentrated in the central part of the coke bin.  相似文献   
43.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
44.
王维  雷静 《声学技术》2022,41(5):724-728
近年来,通过优化飞行程序降低机场飞机噪声影响成为机场环境保护的重要研究方向。文章首先建立了基于飞机“噪声-功率-距离”数据的噪声计算模型,介绍了平均飞行航迹以及连续爬升运行(Continuous Climb Opera-tion, CCO)离场程序的相关理论,最后以大型国际机场为实例,使用飞机平均飞行航迹进行噪声预测,运用综合噪声模型计算出噪声影响面积并绘制噪声影响等值线图,比较了CCO离场相对常规的标准仪表离场(Standard Instru-ment Departure, SID)的降噪效果。结果表明,CCO离场程序可有效降低机场噪声影响,在高噪声级影响区域的降噪效果更佳。  相似文献   
45.
介绍了在复杂环境下爆破拆除一地下特大钢筋混凝土支撑的技术难点。由于合理选取爆破参数,采取孔内高段、孔外低段毫秒微差起爆网路,安全防护采取覆盖、近体、保护性三种措施,有效地阻止了飞石对周围建筑物的损害,并对爆破可能产生的危害进行了科学验算,最后分多次爆破圆满完成拆除任务。  相似文献   
46.
The electronic structures of Zr8Co8 and its hydrides have been systematically investigated using the first-principles calculation based on density functional theory. Additionally, the influence of the Ti and Hf doping on the atomic bonding properties of Zr8Co8 and its hydrides (Zr7HfCo8, Zr7HfCo8H, Zr16Co15HfH48, Zr7TiCo8, Zr7TiCo8H, and Zr16Co15TiH48 compounds) were also studied to provide new insights into the hydrogenation of Zr8Co8. The Ti and Hf atoms were occupied the Zr position in the ZrCo alloy, while they were occupied the Co position in the Zr16Co16H48 system. Ti and Hf doping could achieve the purpose of anti-disproportionation. Ti and Hf could weak the Zr–Co bond for the improvement of the hydrogenation performance of Zr8Co8, and the covalence of the Co–H bond was higher than that of the Zr–H bond. The existence of a Co–H covalent bond in the crystal is conducive to the hydrogen absorption of Zr8Co8 to form Zr16Co16H48. Inhibition of Co–H interaction during Zr8Co8 hydrogenation can accelerate the formation of Zr8Co8H for the improvement of its hydrogenation performance.  相似文献   
47.
Hydrogen has been considered as a promising renewable source to replace fossil fuels to meet energy demand and achieve net-zero carbon emission target. Underground hydrogen storage attracts more interest as it shows potential to store hydrogen at large-scale safely and economically. Meanwhile, wettability is one of the most important formation parameters which can affect hydrogen injection rate, reproduction efficiency and storage capacity. However, current knowledge is still very limited on how fluid-rock interactions affect formation wettability at in-situ conditions. In this study, we thus performed geochemical modelling to interpret our previous brine contact angle measurements of H2-brine-calcite system. The calcite surface potential at various temperatures, pressures and salinities was calculated to predict disjoining pressure. Moreover, the surface species concentrations of calcite and organic stearic acid were estimated to characterize calcite-organic acid electrostatic attractions and thus hydrogen wettability. The results of the study showed that increasing temperature increases the disjoining pressure on calcite surface, which intensifies the repulsion force of H2 against calcite and increases the hydrophilicity. Increasing salinity decreases the disjoining pressure, leading to more H2-wet and contact angle increment. Besides, increasing stearic acid concentration remarkably strengthens the adhesion force between calcite and organic acid, which leads to more hydrophobic and H2-wet. In general, the results from geochemical modelling are consistent with experimental observations that decreasing temperature and increasing salinity and organic acid concentration increase water contact angle. This work also demonstrates the importance of involving geochemical modelling on H2 wettability assessment during underground hydrogen storage.  相似文献   
48.
49.
《Soils and Foundations》2022,62(6):101222
This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.  相似文献   
50.
《Soils and Foundations》2022,62(6):101246
This study analyzed the effect of different treatment methods in enzyme-induced carbonate precipitation (EICP) on the mechanical properties of soil. Soybean crude urease was used to catalyze the precipitation of calcium carbonate (CaCO3). A multiple-phase method was proposed and further compared with commonly practiced EICP treatment methods (including the one-phase method, two-phase method, and premix-and-compact method) from the aspects of chemical conversion efficiency, CaCO3 precipitation distribution, permeability, and unconfined compressive strength. Based on the findings, the characteristics of each method were further discussed and summarized. Although the enzymatic CaCO3 precipitation generated from all the treatment methods could potentiate the soil strength to a great or less degree, using the proposed multiple-phase method could bring about a high chemical conversion efficiency, uniform distribution of CaCO3 as well as preferable permeability retention. In addition, the multiple-phase method could significantly improve the efficiency of urease usage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号